sábado, 31 de mayo de 2008
SENSORES MODULADORES
1.1. Potenciómetros (Variables mecánicas)
Una de las partes es una resistencia fija descubierta la cual puede ser de carbón o de hilo arrollado.
La otra parte es un contacto móvil que se desplaza por la resistencia fija.
En Teoría, para un conductor cualquiera, su resistencia viene dada por:
donde:
r = Resistividad del material (Wm)
A = Sección transversal
l = Longitud del conductor.
En la figura siguiente se muestra el modelo de un potenciómetro. Si se denomina x a la distancia recorrida por el cursos, la resistencia obtenida será:
El problema de este tipo de sensor es:
a. Varía con la temperatura.
b. Varía con la deformación de la sección transversal, causada por la presión o fuerzas ejercidas sobre el.
c. El contacto del cursor origina desgaste, modificando la sección transversal.
Pueden ser lineales, como la figura mostrada anteriormente, o no lineales como el siguiente:
En este último caso, la resistencia fija entre E y C está formada por una sección triangular variable de hilo arrollado. Este hilo tiene una sección A y diámetro D.
La ecuación de su resistencia es ahora:

El potenciómetro se utiliza para medir preferiblemente desplazamientos, conectando el objeto de medición a su cursor. Sin embargo, puede ser utilizado para medir otras variables de forma indirecta, cuando estas generen desplazamientos en otros dispositivos.
Por ejemplo:
a. Se puede utilizar para medir presión, si se conecta el cursor al extremo de un tubo Bourdon.
b. Para medir nivel en líquidos conductores o no conductores.
c. Para medir temperatura si se conecta al extremo de un medidor de bulbo y capilar.
En los casos a y c se utiliza para generar una señal eléctrica. Mientras que en el caso b es el elemento primario.

1.2. Galgas extensométricas (Variables mecánicas)
Si a una pieza de material resistivo se le aplica un esfuerzo, esta se deformará, y cambiará su resistencia. Por tanto, este tipo de sensores se utiliza para medir fuerza o presión, aunque también puede aplicarse a la medida de desplazamientos pequeños.
Todo material al que se le aplica un esfuerzo se deformará en mayor o menor grado, y llegará a un punto en que se romperá. Esta relación esfuerzo vs. deformación se muestra en la siguiente gráfica.

Los principales problemas de las galgas son:
a. Cuidar el margen elástico.
b. El esfuerzo debe ser totalmente transversal a la galga.
c. La temperatura altera su valor.
Ejemplos de galgas:
Las galgas se pueden aplicar a:
a. Medida de fuerza.
b. Medida de presión.
c. Medida de desplazamientos pequeños.
d. Medida de vibración.
1.3. Termorresistencias (Variable térmicas)
El símbolo que la caracteriza es.

El símbolo sin flecha indica que la variación es intrínseca por la característica resistiva, no por manipulación manual.
La ecuación característica de las termorresistencia es la siguiente.

Este dispositivo tiene como limitaciones.
o No puede medir temperaturas próximas a la de la fusión del conductor con que se fabrica.
o El autocalentamiento ocasionará derivas en la medición.
o S se deforma, puede cambiar su patrón de medición.
Tiene como ventaja el ser diez veces más sensible que los termopares, tal como se verá mas adelante.
Normalmente no es necesario considerar todos los coeficientes de la ecuación (19), sino que considerando solo el primer término se tiene una excelente aproximación, es decir,
Donde alfa es la sensibilidad del material, y R0 es la resistencia a la temperatura de referencia (normalmente 0 grados).
En la tabla siguiente muestran las Termorresistencias típicas:

Pt100 (termorresistencia de platino con R0 =100 W a 0° C)
Pt1000 (termorresistencia de platino con R0 =1000 W a 0° C)
1.4. Termistores (Variables térmicas)
Su símbolo será:
La raya quebrada indica que no es lineal. El elemento positivo o negativo indica que tiene una característica positiva o negativa respectivamente. Es decir, si es de coeficiente positivo, PTC, la resistencia se incrementa con la temperatura. Si es de coeficiente negativo, NTC, disminuye con la temperatura.
En el caso de una NTC la ecuación característica será

B = temperatura característica del material (2000 K a 5000 K)
R0 = Resistencia a la temperatura de referencia T0, normalmente la temperatura ambiente (25 °C o 298 K)
Tiene como ventajas el ser más sensible que las Termorresistencias, mas rápidas y permite hilos de conexión mayores.
Tiene como desventaja el ser no lineal, y al variar su temperatura por el autocalentamiento del material.
1.5. Magnetorresistencias (Variable magnéticas)

Está formada por una aleación de Hierro y Níquel (permalloy)
Tiene las siguientes aplicaciones:
o Medición de campos magnéticos en las lectoras de tarjetas.
o Otras magnitudes que provean un cambio en el campo magnético, como el desplazamiento de una pieza, detectores de proximidad, nivel de flotador, etc. En estos casos se utiliza un imán que cambia su posición con el proceso. El campo generado por el imán es medido por la magnetorresistencia.